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Abstract

n absence of a data management strategy, undocumented enterprise data piles up and » challenge: messy dataspace
pecomes increasingly difficult for companies to use to its full potential. As a solution, we
oropose the enrichment of such data with meaning, or more precisely, the interlinking of
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Introduction

» Increasingly difficult to discover and make use of the data

ntent with high-level semanti n . In contr low-level lifting and . . .
data content with high-level semantic concepts. In contrast to low-level data lifting > obstacle in performing complex data mining analyses
mid-level information extraction, we would like to reach a high level of knowledge
conceptualization. Currently, this can only be achieved if human experts are integrated > hinders employees to efficiently work with the data content

Into the enrichment process. Since human expertise Is costly and limited, our | |
methodology Is designed to be as efficient as possible. That includes quantifying » approach: semantic enrichment

enrichment levels as well as assessing efficiency of gathering and exploiting user > g ith high-I |
feedback. This paper proposes research on how semantic enrichment of undocumented augment data with high-level concepts
enterprise data with humans in the loop can be conducted. We already got promising >include feedback from experts via human-in-the-loop approach

preliminary results from several projects in which we enriched various enterprise data.
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Architecture 0_ Research Questions
> How can an efficient high-level semantic enrichment be conducted?
Knowledge Service
4} Q# » RQ1: What state-of-the-art approaches can be utilized and
% Semantic Enrichment Toolkit how can they be adapted?
=== > _n# T == . @ . » RQ2: How can we efficiently integrate human experts in the
i Management = < _ o _ _
Z==2 Information user [ =) ‘ process to achieve our envisioned high level of enrichment?
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JVIng IH » RQ3: How can we quantify the enrichment level of
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Dataspace
Early Prototype: Semantic Enrichment Toolkit Use Case: Interactive Concept Mining on Personal Data
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